Average Order Value (AOV)
The Average Order Value (AOV) metric represents the average revenue per purchase. It is calculated as total revenue divided by the number of purchases.
Metric model
- Name
metric
- Type
- string
- Description
Always
aov
for this metric.
- Name
value
- Type
- float
- Description
AOV value for the current period.
- Name
previous
- Type
- float
- Description
AOV from the previous comparable period.
- Name
change
- Type
- float
- Description
Percent change between periods.
- Name
formattedValue
- Type
- string
- Description
Human-friendly value of AOV.
- Name
formattedPrevious
- Type
- string
- Description
Human-friendly previous AOV.
- Name
period.id
- Type
- string
- Description
Time period ID (e.g.,
7d
).
- Name
period.name
- Type
- string
- Description
Readable label for the period.
- Name
periodRange.current.start
- Type
- string
- Description
ISO timestamp for current period start.
- Name
periodRange.current.end
- Type
- string
- Description
ISO timestamp for current period end.
- Name
periodRange.previous.start
- Type
- string
- Description
ISO timestamp for previous period start.
- Name
periodRange.previous.end
- Type
- string
- Description
ISO timestamp for previous period end.
- Name
performance.duration
- Type
- float
- Description
Duration in milliseconds to compute the metric.
- Name
performance.formatted
- Type
- string
- Description
Formatted response time.
Retrieve AOV metric
This endpoint returns the average order value over a specified period.
Optional query parameters
- Name
period
- Type
- string
- Description
The time period for which to fetch the metric. Common values:
today
yesterday
7d
30d
this_month
Request
curl -G http://localhost:3000/api/metrics/average-order-value \
-H "Authorization: Bearer {token}" \
-d period=7d
Response
{
"metric": "aov",
"value": 33.62,
"previous": 33.70,
"change": -0.25,
"formattedValue": "€ 33,62",
"formattedPrevious": "€ 33,70",
"period": {
"id": "7d",
"name": "Last 7 days"
},
"periodRange": {
"current": {
"start": "2025-03-16T08:50:55.027Z",
"end": "2025-03-23T08:50:55.026Z"
},
"previous": {
"start": "2025-03-09T08:50:55.027Z",
"end": "2025-03-16T08:50:55.026Z"
}
},
"performance": {
"duration": 823.27,
"formatted": "823 ms"
}
}
Use cases
- Track how order size evolves over time
- Segment by campaign to assess cart behavior
- Optimize upsells, bundles, and pricing strategies