Purchases
The purchases
metric measures the total number of completed purchase events within a given period. It is a key indicator of ecommerce performance and conversion outcomes.
Metric model
- Name
metric
- Type
- string
- Description
Always
purchases
for this metric.
- Name
value
- Type
- integer
- Description
Total number of purchases in the current period.
- Name
previous
- Type
- integer
- Description
Purchase count from the previous period.
- Name
change
- Type
- float
- Description
Percent change compared to the previous period.
- Name
formattedValue
- Type
- string
- Description
Formatted current period value.
- Name
formattedPrevious
- Type
- string
- Description
Formatted previous period value.
- Name
period.id
- Type
- string
- Description
Period ID (e.g.,
7d
).
- Name
period.name
- Type
- string
- Description
Human-friendly name of the period.
- Name
periodRange.current.start
- Type
- string
- Description
Start timestamp of the current period.
- Name
periodRange.current.end
- Type
- string
- Description
End timestamp of the current period.
- Name
periodRange.previous.start
- Type
- string
- Description
Start timestamp of the previous period.
- Name
periodRange.previous.end
- Type
- string
- Description
End timestamp of the previous period.
- Name
performance.duration
- Type
- float
- Description
Time taken to compute the metric in milliseconds.
- Name
performance.formatted
- Type
- string
- Description
Formatted query performance (e.g.,
768 ms
).
Retrieve purchases metric
This endpoint allows you to retrieve the number of purchases within a selected period.
Optional query parameters
- Name
period
- Type
- string
- Description
The period to retrieve. Most common:
today
– Todayyesterday
– Yesterday7d
– Last 7 days30d
– Last 30 daysthis_month
– This month
Request
curl -G http://localhost:3000/api/metrics/purchases \
-H "Authorization: Bearer {token}" \
-d period=7d
Response
{
"metric": "purchases",
"value": 253,
"previous": 271,
"change": -6.64,
"formattedValue": "253",
"formattedPrevious": "271",
"period": {
"id": "7d",
"name": "Last 7 days"
},
"periodRange": {
"current": {
"start": "2025-03-16T08:50:55.026Z",
"end": "2025-03-23T08:50:55.025Z"
},
"previous": {
"start": "2025-03-09T08:50:55.027Z",
"end": "2025-03-16T08:50:55.026Z"
}
},
"performance": {
"duration": 768.45,
"formatted": "768 ms"
}
}
Use cases
- Track purchase volume over time
- Monitor the impact of campaigns on sales
- Detect seasonal trends and spikes
- Calculate conversion and sales efficiency